Multi-Branch-CNN: classification of ion channel interacting peptides using parallel convolutional neural networks

Author:

Yan Jielu,Zhang Bob,Zhou Mingliang,Kwok Hang Fai,Siu Shirley W. I.

Abstract

AbstractLigand peptides that have high affinity for ion channels are critical for regulating ion flux across the plasma membrane. These peptides are now being considered as potential drug candidates for many diseases, such as cardiovascular disease and cancers. There are several studies to identify ion channel interacting peptides computationally, but, to the best of our knowledge, none of them published available tools for prediction. To provide a solution, we present Multi-branch-CNN, a parallel convolutional neural networks (CNNs) method for identifying three types of ion channel peptide binders (sodium, potassium, and calcium). Our experiment shows that the Multi-Branch-CNN method performs comparably to thirteen traditional ML algorithms (TML13) on the test sets of three ion channels. To evaluate the predictive power of our method with respect to novel sequences, as is the case in real-world applications, we created an additional test set for each ion channel, called the novel-test set, which has little or no similarities to the sequences in either the sequences of the train set or the test set. In the novel-test experiment, Multi-Branch-CNN performs significantly better than TML13, showing an improvement in accuracy of 6%, 14%, and 15% for sodium, potassium, and calcium channels, respectively. We confirmed the effectiveness of Multi-Branch-CNN by comparing it to the standard CNN method with one input branch (Single-Branch-CNN) and an ensemble method (TML13-Stack). To facilitate applications, the data sets, script files to reproduce the experiments, and the final predictive models are freely available at https://github.com/jieluyan/Multi-Branch-CNN.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3