Protein loop modeling and refinement using deep learning models

Author:

Pan Feng,Zhang Yuan,Lo Chun-Chao,Mandal Arunima,Liu Xiuwen,Zhang Jinfeng

Abstract

AbstractLoops in proteins play essential roles in protein functions and interactions. The structural characterization of loops is challenging because of their conformational flexibility and relatively poor conservation in multiple sequence alignments. Many experimental and computational approaches have been carried out during the last few decades for loop modeling. Although the latest AlphaFold2 achieved remarkable performance in protein structure predictions, the accuracy of loop regions for many proteins still needs to be improved for downstream applications such as protein function prediction and structure based drug design. In this paper, we proposed two novel deep learning architectures for loop modeling: one uses a combined convolutional neural network (CNN)-recursive neural network (RNN) structure (DeepMUSICS) and the other is based on refinement of histograms using a 2D CNN architecture (DeepHisto). In each of the methods, two types of models, conformation sampling model and energy scoring model, were trained and applied in the loop folding process. Both methods achieved promising results and worth further investigations. Since multiple sequence alignments (MSA) were not used in our architecture, the energy scoring models have less bias from MSA. We believe the methods may serve as good complements for refining AlphaFold2 predicted structures.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop;Research;2024-01

2. Loop dynamics and the evolution of enzyme activity;Nature Reviews Chemistry;2023-05-24

3. Protein Loop Modeling Using AlphaFold2;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3