Computational characterization of recombinase circuits for periodic behaviors

Author:

Landau Judith,Cuba Samaniego Christian,Giordano Giulia,Franco Elisa

Abstract

AbstractIn nature, recombinases are site-specific proteins capable of rearranging DNA, and they are expanding the repertoire of gene editing tools used in synthetic biology. The on/off response of recombinases, achieved by inverting the direction of a promoter, makes them suitable for Boolean logic computation; however, recombinase-based logic gate circuits are single-use due to the irreversibility of the DNA rearrangement, and it is still unclear how a dynamical circuit, such as an oscillator, could be engineered using recombinases. Preliminary work has demonstrated that recombinase-based circuits can yield periodic behaviors in a deterministic setting. However, since a few molecules of recombinase are enough to perform the inverting function, it is crucial to assess how the inherent stochasticity at low copy number affects the periodic behavior. Here, we propose six different circuit designs for recombinase-based oscillators. We model them in a stochastic setting, leveraging the Gillespie algorithm for extensive simulations, and we show that they can yield periodic behaviors. To evaluate the incoherence of oscillations, we use a metric based on the statistical properties of auto-correlation functions. The main core of our design consists of two self-inhibitory, recombinase-based modules coupled by a common promoter. Since each recombinase inverts its own promoter, the overall circuit can give rise to switching behavior characterized by a regular period. We introduce different molecular mechanisms (transcriptional regulation, degradation, sequestration) to tighten the control of recombinase levels, which slows down the response timescale of the system and thus improves the coherence of oscillations. Our results support the experimental realization of recombinase-based oscillators and, more generally, the use of recombinases to generate dynamic behaviors in synthetic biology.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Measuring a mitotic oscillator: The ARC discontinuity;Bulletin of Mathematical Biology,1974

2. Modeling the mitotic oscillator driving the cell division cycle;Comments on Theoretical Biology,1993

3. The mitotic oscillator: Temporal self-organization in a phosphorylation-dephosphorylation enzymatic cascade;Berichte der Bunsen-Gesellschaft für Physikalische Chemie,1994

4. Circadian clocks limited by noise;Nature,2000

5. A model of the cell-autonomous mammalian circadian clock

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3