Integrating transcriptomes to investigate genes associated with adaptation to aquatic environments, and assess phylogenetic conflict and whole-genome duplications in Alismatales

Author:

Chen Ling-Yun,Lu Bei,Morales-Briones Diego F.,Moody Michael L.,Liu Fan,Hu Guang-Wan,Huang Chien-Hsun,Chen Jin-Ming,Wang Qing-Feng

Abstract

AbstractLand plants first evolved from freshwater algae, and flowering plants returned to water as early as the Cretaceous and multiple times beyond. Alismatales is the largest clade of aquatic angiosperms including all marine angiosperms, as well as terrestrial plants. We used Alismatales to explore plant adaptation to aquatic environments by including 95 samples (89 Alismatales species) covering four genomes and 91 transcriptomes (59 generated in this study). To provide a basis for investigating adaptation, we assessed phylogenetic conflict and whole-genome duplication (WGD) events in Alismatales. We recovered a relationship for the three main clades in Alismatales as ((Tofieldiaceae, Araceae), core Alismatids). There is phylogenetic conflict among the backbone of the three main clades that could be due to incomplete lineage sorting and introgression. We identified 18 putative WGD events. One of them had occurred at the most recent common ancestor of core Alismatids, and four occurred at seagrass lineages. Other events are distributed in terrestrial, emergent, and submersed life-forms and seagrasses across Alismatales. We also found that lineage and life-form were each important for different evolutionary patterns for the genes related to freshwater/marine adaptation. For example, some light or ethylene-related genes were lost in the seagrass Zosteraceae, but present in other seagrasses and freshwater species. Stomata-related genes were lost in both submersed freshwater species and seagrasses. Nicotianamine synthase genes, which are important in iron intake, expanded in both submersed freshwater species and seagrasses. Our results advance the understanding of the adaptation to aquatic environments, phylogeny, and whole-genome duplication of Alismatales.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3