Author:
Dalton Marshall A.,D’Souza Arkiev,Lv Jinglei,Calamante Fernando
Abstract
AbstractThe hippocampus supports multiple cognitive functions including episodic memory. Recent work has highlighted functional differences along the anterior-posterior axis of the human hippocampus but the neuroanatomical underpinnings of these differences remain unclear. We leveraged track-density imaging to systematically examine anatomical connectivity between the cortical mantle and the anterior-posterior axis of the in-vivo human hippocampus. We first identified the most highly connected cortical areas and detailed the degree to which they preferentially connect along the anterior-posterior axis of the hippocampus. Then, using a tractography pipeline specifically tailored to measure the location and density of streamline endpoints within the hippocampus, we characterised where, within the hippocampus, these cortical areas preferentially connect. Our results were striking in showing that different parts of the hippocampus preferentially connect with distinct cortical areas. Furthermore, we provide evidence that both gradients and circumscribed areas of dense extrinsic anatomical connectivity exist within the human hippocampus. These findings inform conceptual debates in the field by unveiling how specific regions along the anterior-posterior axis of the hippocampus are associated with different cortical inputs/outputs. Overall, our results represent a major advance in our ability to map the anatomical connectivity of the human hippocampus in-vivo and inform our understanding of the neural architecture of hippocampal dependent memory systems in the human brain. This detailed characterization of how specific portions of the hippocampus anatomically connect with cortical brain regions may promote a better understanding of its role in cognition and we emphasize the importance of considering the hippocampus as a heterogeneous structure.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献