Abstract
SUMMARYOver the past decade, thousands of putative human RNA binding proteins (RBPs) have been identified and increased the demand for specifying RNA binding capacities. Here, we developed RNA affinity purification followed by sequencing (RAPseq) that enables in vitro large-scale profiling of RBP binding to native RNAs. First, by employing RAPseq, we found that vertebrate HURs recognize a conserved RNA binding motif and bind predominantly to introns in zebrafish compared to 3’UTRs in human RNAs. Second, our dual RBP assays (co-RAPseq) uncovered cooperative RNA binding of HUR and PTBP1 within an optimal distance of 27 nucleotides. Third, we developed T7-RAPseq to discern m6A-dependent and - independent RNA binding sites of YTHDF1. Fourth, RAPseq of 26 novel non-canonical RBPs revealed specialized moonlighting interactions. Last, five pathological IGF2BP family variants exhibited different RNA binding patterns. Overall, our simple, scalable and versatile method enables to fast-forward RBP-related questions.Graphical AbstractHIGHLIGHTSRAPseq reveals in vitro-derived RBP-RNA interactomesthe vertebrate-conserved HUR binding motif adapted to species-unique RNA featuresco-RAPseq and T7-RAPseq uncover binding cooperativity and modification dependenciesnon-canonical RBPs have specialized RNA interactomes
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献