Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration

Author:

Iriarte-Alonso Maiara A.,Bittner Alexander M.,Chiantia SalvatoreORCID

Abstract

AbstractWhile the molecular mechanisms of virus infectivity are rather well known, the detailed consequences of environmental factors on virus biophysical properties are poorly understood. Seasonal influenza outbreaks are usually connected to the low winter temperature, but also to the low relative air humidity. Indeed, transmission rates increase in cold regions during winter. While low temperature must slow degradation processes, the role of low humidity is not clear. We studied the effect of relative humidity on a model of influenza A H1N1 virus envelope, a supported lipid bilayer containing the surface glycoprotein hemagglutinin (HA), which is present in the viral envelope in very high density. For complete cycles of hydration, dehydration and rehydration, we evaluate the membrane properties in terms of structure and dynamics, which we assess by combining confocal fluorescence microscopy, raster image correlation spectroscopy, line-scan fluorescence correlation spectroscopy and atomic force microscopy. Our findings indicate that the presence of HA prevents macroscopic membrane damage after dehydration. Without HA, fast membrane disruption is followed by irreversible loss of lipid and protein mobility. Although our model is principally limited by the membrane composition, the macroscopic effects of HA under dehydration stress reveal new insights on the stability of the virus at low relative humidity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3