The Nerve Growth Factor IB-like Receptor Nurr1 (NR4A2) Recruits CoREST Transcription Repressor Complexes to Silence HIV Following Proviral Reactivation in Microglial Cells

Author:

Ye Fengchun,Alvarez-Carbonell David,Nguyen Kien,Valadkhan Saba,Leskov Konstantin,Garcia-Mesa Yoelvis,Sreeram Sheetal,Karn Jonathan

Abstract

ABSTRACTHuman immune deficiency virus (HIV) infection of microglial cells in the brain leads to chronic neuroinflammation, which is antecedent to the development of HIV-associated neurocognitive disorders (HAND) in the majority of patients. Productively HIV infected microglia release multiple neurotoxins including proinflammatory cytokines and HIV proteins such as envelope glycoprotein (gp120) and transactivator of transcription (Tat). However, powerful counteracting silencing mechanisms in microglial cells result in the rapid shutdown of HIV expression to limit neuronal damage. Here we investigated whether the Nerve Growth Factor IB-like nuclear receptor Nurr1 (NR4A2), which is a repressor of inflammation in the brain, acts to directly restrict HIV expression. HIV silencing was substantially enhanced by Nurr1 agonists in both immortalized human microglial cells (hµglia) and induced pluripotent stem cells (iPSC)-derived human microglial cells (iMG). Overexpression of Nurr1 led to viral suppression, whereas by contrast, knock down (KD) of endogenous Nurr1 blocked HIV silencing. Chromatin immunoprecipitation (ChIP) assays showed that Nurr1 mediates recruitment of the CoREST/HDAC1/G9a/EZH2 transcription repressor complex to HIV promoter resulting in epigenetic silencing of active HIV. Transcriptomic studies demonstrated that in addition to repressing HIV transcription, Nurr1 also downregulated numerous cellular genes involved in inflammation, cell cycle, and metabolism, thus promoting HIV latency and microglial homoeostasis. Thus, Nurr1 plays a pivotal role in modulating the cycles of proviral reactivation by cytokines and potentiating the proviral transcriptional shutdown. These data highlight the therapeutic potential of Nurr1 agonists for inducing HIV silencing and microglial homeostasis and amelioration of the neuroinflammation associated with HAND.AUTHOR SUMMARYHIV enters the brain almost immediately after infection where it infects perivascular macrophages, microglia and, to a less extent, astrocytes. In previous work using an immortalized human microglial cell model, we observed that integrated HIV constantly underwent cycles of reactivation and subsequent silencing. In the present study, we found that the Nurr1 nuclear receptor is a key mediator of HIV silencing. The functional activation of Nurr1 by specific agonists, or the over expression of Nurr1, resulted in rapid silencing of activated HIV in microglial cells. Global gene expression analysis confirmed that Nurr1 not only repressed HIV expression but also regulated numerous genes involved in microglial homeostasis and inflammation. Thus, Nurr1 is pivotal for HIV silencing and repression of inflammation in the brain and is a promising therapeutic target for treatment of HAND.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3