IGF1 Signaling in Temporomandibular Joint Fibrocartilage Stem Cells Regulates Cartilage Growth and Homeostasis in Mice

Author:

Bi Ruiye,Luo Xueting,Li Qianli,Li Peiran,Fan Yi,Ying Binbin,Zhu SongsongORCID

Abstract

AbstractObjectiveInvestigate functional roles of Igf1 in fibrocartilage stem cell (FCSC) for temporomandibular joint (TMJ) cartilage growth and homeostasis.MethodsGli1-CreER+; RosaTdTomato mice were used for validating FCSCs lineage labeling efficiency. In Gli1-/Col2-CreER+; Igf1fl/fl mice, TMJ cartilage morphological and functional changes were characterized at 4 weeks and 5 months after Igf1 deletion. H&E, Safranine O and immuno-histochemistry staining were performed. FCSCs specificity were characterized using EdU and TUNEL staining. A unilateral anterior crossbite (UAC) mouse model was generated for mimicking TMJ osteoarthritis status.ResultsIn Gli1-CreER+; RosaTdTomato mice, RFP labeled FCSCs showed favorable proliferative capacity. 4 weeks after Igf1 deletion, Gli1+ and Col2+ cell lineages led to distinct pathological changes of TMJ cartilage morphology. A more serious reduction of cartilage thickness and cell density were found in the superficial layers in Gli1-CreER+; Igf1fl/fl mice. 5 months after Igf1 deletion, more severe disordered cell arrangement in TMJ cartilage were found in both groups with Gli1+ and Col2+ specific deletion of Igf1. Immunostaining showed that PI3K/Akt signaling pathway was blocked in the superficial layers of TMJ in Gli1-CreER+; RosaTdTomato mice. Finally, deletion of Igf1 in FCSCs significantly aggravated osteoarthritis (OA) phenotypic changes in TMJ in UAC mice model, characterized in decreased cartilage thickness, cell numbers and loss of extracellular matrix secretion.ConclusionIgf1 deletion disrupted stem cell functions of FCSCs, leading to disordered cell distribution during TMJ growth, as well as exaggerated the OA process in TMJ under pathological condition. In TMJ cartilage, Igf1 expression in FCSCs is critical for PI3K/Akt activation, which may be involved in regulating FCSCs self-renewal and differentiation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3