Figbird: A probabilistic method for filling gaps in genome assemblies

Author:

Tarafder Sumit,Islam Mazharul,Shatabda Swakkhar,Rahman AtifORCID

Abstract

AbstractMotivationAdvances in sequencing technologies have led to sequencing of genomes of a multitude of organisms. However, draft genomes of many of these organisms contain a large number of gaps due to repeats in genomes, low sequencing coverage and limitations in sequencing technologies. Although there exist several tools for filling gaps, many of these do not utilize all information relevant to gap filling.ResultsHere, we present a probabilistic method for filling gaps in draft genome assemblies using second generation reads based on a generative model for sequencing that takes into account information on insert sizes and sequencing errors. Our method is based on the expectation-maximization (EM) algorithm unlike the graph based methods adopted in the literature. Experiments on real biological datasets show that this novel approach can fill up large portions of gaps with small number of errors and misassemblies compared to other state of the art gap filling tools.Availability and ImplementationThe method is implemented using C++ in a software named “Filling Gaps by Iterative Read Distribution (Figbird)”, which is available at: https://github.com/SumitTarafder/Figbird.Contactatif@cse.buet.ac.bdSupplementary informationSupplementary data are available at Bioinformatics online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3