Volumetric Tomographic 3D Bioprinting of Heterocellular Bone-like Tissues in Seconds

Author:

Gehlen Jenny,Qiu Wanwan,Müller RalphORCID,Qin Xiao-HuaORCID

Abstract

Abstract3D bioprinting has emerged as a powerful tool for custom fabrication of biomimetic hydrogel constructs that support the differentiation of stem cells into functional bone tissues. Existing stem cell-derived in vitro bone models, however, often lack terminally differentiated bone cells named osteocytes which are crucial for bone homeostasis. Here, we report ultrafast volumetric tomographic photofabrication of centimeter-scale heterocellular bone models that enabled successful 3D osteocytic differentiation of human mesenchymal stem cells (hMSCs) within hydrogels after 42 days co-culture with human umbilical vein endothelial cell (HUVECs). It is hypothesized that after 3D bioprinting the paracrine signaling between hMSCs and HUVECs will promote their differentiation into osteocytes while recreating the complex heterocellular bone microenvironment. To this, we formulated a series of bioinks with varying concentrations of gelatin methacryloyl (GelMA) and lithium Phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP). A bioink comprising 5% GelMA and 0.05% LAP was identified as an optimal material with high cell viability (>90%) and excellent structural fidelity. Increasing LAP concentration led to much lower degree of cell spreading, presumably due to phototoxicity effects. Biochemical assays evidenced significantly increased expression of both osteoblastic markers (collagen-I, ALP, osteocalcin) and osteocytic markers (Podoplanin, PDPN; dentin matrix acidic phosphoprotein 1, Dmp1) after 3D co-cultures for 42 days. Additionally, we demonstrate volumetric 3D bioprinting of perfusable, pre-vascularized bone models where HUVECs self-organized into an endothelium-lined channel within 2 days. Altogether, this work leverages the benefits of volumetric tomographic bioprinting and 3D co-culture, offering a promising platform for scaled biofabrication of 3D bone-like tissues with unprecedented long-term functionality.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3