Abstract
AbstractPurposeThe objective of this study is to validate the existence of dual cores within the typical phosphotyrosine binding (PTB) domain and to identify potentially damaging and pathogenic nonsynonymous coding single nuclear polymorphisms (nsSNPs) in the canonical PTB domain of the CCM2 gene that causes cerebral cavernous malformations (CCMs).MethodsThe nsSNPs within the coding sequence for PTB domain of human CCM2 gene, retrieved from exclusive database search, were analyzed for their functional and structural impact using a series of bioinformatic tools. The effects of the mutations on tertiary structure of the PTB domain in human CCM2 protein were predicted to examine the effect of the nsSNPs on tertiary structure on PTB Cores.ResultsOur mutation analysis, through alignment of protein structures between wildtype CCM2 and mutant, indicated that the structural impacts of pathogenic nsSNPs is biophysically limited to only the spatially adjacent substituted amino acid site with minimal structural influence on the adjacent core of the PTB domain, suggesting both cores are independently functional and essential for proper CCM2 function.ConclusionUtilizing a combination of protein conservation and structure-based analysis, we analyzed the structural effects of inherited pathogenic mutations within the CCM2 PTB domain. Our results indicated that the pathogenic amino acid substitutions lead to only subtle changes locally confined to the surrounding tertiary structure of the PTB core within which it resides, while no structural disturbance to the neighboring PTB core was observed, reaffirming the presence of dual functional cores in the PTB domain.
Publisher
Cold Spring Harbor Laboratory