Author:
Ridings Rebecca,Gabriel Alon,Elliott Colin I.,Shafer Aaron B.A.
Abstract
AbstractDNA quantification technology has increased in accuracy and sensitivity, now allowing for detection and profiling of trace DNA. Secondary DNA transfer occurs when DNA is deposited via an intermediary source (e.g. clothing, tools, utensils). Multiple courtrooms have now seen secondary transfer introduced as an explanation for DNA being present at a crime scene, but sparse experimental studies mean expert opinions are often limited. Here, we used bovine blood and indigo denim substrates to quantify the amount of secondary DNA transfer and quality of STRs under three different physical contact scenarios: passive, pressure, and friction. We showed that the DNA transfer was highest under a friction scenario, followed by pressure and passive treatments. The STR profiles showed a similar, albeit less pronounced trend, with correctly scored alleles and genotype completeness being highest under a friction scenario, followed by pressure and passive. DNA on the primary substrate showed a decrease in concentration and genotype completeness both immediately and at 24 hours, suggestive of a loss of DNA during the primary transfer. The majority of secondary transfer samples amplified less than 50% of STR loci regardless of contact type. This study showed that while DNA transfer is common between denim, this is not manifested in full STR profiles. We discuss the possible technical solutions to partial profiles from trace DNA, and more broadly the ubiquity of secondary DNA transfer.
Publisher
Cold Spring Harbor Laboratory