Characterizing disease-associated human proteins without available protein structures or homologues

Author:

Sen NeeladriORCID,Anishchenko IvanORCID,Bordin NicolaORCID,Sillitoe Ian,Velankar Sameer,Baker David,Orengo Christine

Abstract

AbstractMutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques such as RoseTTAFold and AlphaFold, we can predict the structure of these proteins even in the absence of structural homologues. We modeled and extracted the domains from 553 disease-associated human proteins. We noticed that the model quality was higher and the RMSD lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein-protein interfaces, conserved residues and destabilising effects caused by residue mutations in these predicted structures. We then explored whether the disease-associated mutations were in the proximity of these predicted functional sites or if they destabilized the protein structure based on ddG calculations. We could explain 80% of these disease-associated mutations based on proximity to functional sites or structural destabilization. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond sequence: Structure-based machine learning;Computational and Structural Biotechnology Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3