A One-Step open RT-qPCR for SARS-CoV-2 detection

Author:

Cerda Ariel,Rivera Maira,Armijo Grace,Ibarra-Henriquez Catalina,Reyes Javiera,Blázquez-Sánchez Paula,Avilés Javiera,Arce Aníbal,Seguel Aldo,Brown Alexander J.,Vásquez Yesseny,Martín Marcelo Cortez-San,Cubillos Francisco,García Patricia,Ferres Marcela,Ramírez-Sarmiento César A.,Federici Fernán,Gutiérrez Rodrigo A.ORCID

Abstract

AbstractThe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), etiological agent of the coronavirus disease 2019 (COVID-19), is currently detected by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) of its viral RNA genome. Within the available alternatives, One-Step procedures are preferred since they are fast and significantly decrease preanalytical errors, minimizing the risk of diagnostic errors.Increasing the testing capacity and tracing contacts are essential steps to control the pandemic. However, high-cost commercial reagents subject to shortage and poor scalability have hindered the use of these technologies and their adoption for a wide population-scale testing, being even more critical in developing countries. In the current context, open-source initiatives have promoted global collaboration to promote accessible solutions for rapid local deployment. As a result, open protocols are being developed for the local production of SARS-CoV-2 diagnostics.This work aimed to produce an open-source system for SARS-CoV-2 diagnostic tests in RNA clinical samples. We provide guidelines for standardizing an open One-Step RT-qPCR master mix using recombinant M-MLV reverse transcriptase together with either Pfu-Sso7d or Taq DNA polymerase. Both were tested on synthetic RNA and clinical samples, observing a good correlation when compared to commercial RT-qPCR kits. Nevertheless, the best results were obtained using M-MLV RT combined with Taq DNA polymerase in a probe-based RT-qPCR assay, allowing successful discrimination between positive and negative samples with accuracies comparable to a CDC-recommended commercial kit.Here, we demonstrate that these open RT-qPCR systems can be successfully used to identify SARS-CoV-2 in clinical samples and potentially be implemented in any molecular diagnostic laboratory.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3