Less is worse than none: ineffective adaptive foraging can destabilise food webs

Author:

Ho Hsi-ChengORCID,Pawar SamraatORCID,Tylianakis Jason M.ORCID

Abstract

AbstractConsumers can potentially adjust their diet in response to changing resource abundances, thereby achieving better foraging payoffs. Although previous work has explored how such adaptive foraging scales up to determine the structure and dynamics of food webs, consumers may not be able to perform perfect diet adjustment due to sensory or cognitive limitations. Whether the effectiveness of consumers’ diet adjustment alters food-web consequences remains unclear.Here, we study how adaptive foraging, specifically the effectiveness (i.e. rate) with which consumers adjust their diet, influences the structure, dynamics, and overall species persistence in synthetic food webs.We model metabolically-constrained optimal foraging as the mechanistic basis of adaptive diet adjustment and ensuing population dynamics within food webs. We compare food-web dynamical outcomes among simulations sharing initial states but differing in the effectiveness of diet adjustment.We show that adaptive diet adjustment generally makes food-web structure resilient to species loss. Effective diet adjustment that maintains optimal foraging in the face of changing resource abundances facilitates species persistence in the community, particularly reducing the extinction of top consumers. However, a greater proportion of intermediate consumers goes extinct as optimal foraging becomes less-effective and, unexpectedly, slow diet adjustment leads to higher extinction rates than no diet adjustment at all. Therefore, food-web responses cannot be predicted from species’ responses in isolation, as even less-effective adaptive foraging benefits individual species (better than non-adaptive) but can harm species’ persistence in the food web as a whole (worse than non-adaptive).Whether adaptive foraging helps or harms species coexistence has been contradictory in literature Our finding that it can stabilise or destabilise the food web depending on how effectively it is performed help reconcile this conflict. Inspired by our simulations, we deduce that there may exist a positive association between consumers’ body size and adaptive-foraging effectiveness in the real world. We also infer that such effectiveness may be higher when consumers cognise complete information about their resources, or when trophic interactions are driven more by general traits than by specific trait-matching. We thereby suggest testable hypotheses on species persistence and food-web structure for future research, in both theoretical and empirical systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3