Multiplex Embedding of Biological Networks Using Topological Similarity of Different Layers

Author:

Coşkun Mustafa,Koyutürk Mehmet

Abstract

AbstractNetwork embedding techniques, which provide low dimensional representations of the nodes in a network, have been commonly applied to many machine learning problems in computational biology. In most of these applications, multiple networks (e.g., different types of interactions/associations or semantically identical networks that come from different sources) are available. Multiplex network embedding aims to derive strength from these data sources by integrating multiple networks with a common set of nodes. Existing approaches to this problem treat all layers of the multiplex network equally while performing integration, ignoring the differences in the topology and sparsity patterns of different networks. Here, we formulate an optimization problem that accounts for inner-network smoothness, intra-network smoothness, and topological similarity of networks to compute diffusion states for each network. To quantify the topological similarity of pairs of networks, we use Gromov-Wasserteins discrepancy. Finally, we integrate the resulting diffusion states and apply dimensionality reduction (singular value decomposition after log-transformation) to compute node embeddings. Our experimental results in the context of drug repositioning and drug-target prediction show that the embeddings computed by the resulting algorithm, Hattusha, consistently improve predictive accuracy over algorithms that do not take into account the topological similarity of different networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3