Do You Want to Build a Genome? Benchmarking Hybrid Bacterial Genome Assembly Methods

Author:

Breckell Georgia LORCID,Silander Olin KORCID

Abstract

AbstractLong read sequencing technologies now allow routine highly contiguous assembly of bacterial genomes. However, because of the lower accuracy of some long read data, it is often combined with short read data (e.g. Illumina), to improve assembly quality. There are a number of methods available for producing such hybrid assemblies. Here we use Illumina and Oxford Nanopore (ONT) data from 49 natural isolates of Escherichia coli to characterise differences in assembly accuracy for five assembly methods (Canu, Unicycler, Raven, Flye, and Redbean). We evaluate assembly accuracy using five metrics designed to measure structural accuracy and sequence accuracy (indel and substitution frequency). We assess structural accuracy by quantifying (1) the contiguity of chromosomes and plasmids; (2) the fraction of concordantly mapped Illumina reads withheld from the assembly; and (3) whether rRNA operons are correctly oriented. We assess indel and substitution frequency by quantifying (1) the fraction of open reading frames that appear truncated and (2) the number of variants that are called using Illumina reads only. Applying these assembly metrics to a large number of E. coli strains, we find that different assembly methods offer different advantages. In particular, we find that Unicycler assemblies have the highest sequence accuracy in non-repetitive regions, while Flye and Raven tend to be the most structurally accurate. In addition, we find that there are unidentified strain-specific characteristics that affect ONT consensus accuracy, despite individual reads having similar levels of accuracy. The differences in consensus accuracy of the ONT reads can preclude accurate assembly regardless of assembly method. These results provide quantitative insight into the best approaches for hybrid assembly of bacterial genomes and the expected levels of structural and sequence accuracy. They also show that there are intrinsic idiosyncratic strain-level differences that inhibit accurate long read bacterial genome assembly. However, we also show it is possible to diagnose problematic assemblies, even in the absence of ground truth, by comparing long-read first and short-read first assemblies.Author NotesAll supporting data, code and protocols have been provided within the article or through supplementary data files. The supporting code is available from the GitHub repository https://github.com/GeorgiaBreckell/assembly_pipeline. nine supplementary figures and three supplementary tables are available with the online version of this article.Data summarySequence data and genome assemblies for the natural isolates are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB36951. Genome assemblies for additional E. coli strains used here are available from NCBI: (MG1655, SE11, REL606, CFT073, W, IA136, O157:H7-EDL933)

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3