Simultaneous pathway engagement of translation in astrocytes, circadian rhythm in GABAergic neurons and cytoskeleton in glutamatergic neurons precede electroencephalographic changes in neurodegenerative prion disease

Author:

Kaczmarczyk LechORCID,Schleif Melvin,Dittrich Lars,Williams Rhiannan,Koderman Maruša,Bansal Vikas,Rajput AshishORCID,Schulte Theresa,Jonson MariaORCID,Krost Clemens,Testaquadra Fabio,Bonn StefanORCID,Jackson Walker S.ORCID

Abstract

AbstractSelective vulnerability is an enigmatic feature of neurodegenerative diseases (NDs), whereby a widely expressed protein causes lesions in specific brain regions and cell types. This selectivity may arise from cells possessing varying capacities to regain proteostasis when stressed by cytotoxic protein conformers. Using the RiboTag method in mice, translational responses of five neural subtypes to acquired prion disease (PrD) were measured. Pre-onset and disease onset timepoints were chosen based on longitudinal electroencephalography (EEG) that revealed a gradual increase in theta power between 10- and 18-weeks after prion injection, resembling a clinical feature of human PrD. At disease onset, marked by significantly increased theta power and histopathological lesions, mice had pronounced translatome changes in all five cell types despite having a normal outward appearance. Remarkably, at a pre-onset stage, prior to EEG and neuropathological changes, we found that 1) translatomes of astrocytes indicated a sharply reduced synthesis of ribosomal and mitochondrial components, 2) excitatory neurons showed increased expression of cytoskeletal genes, and 3) inhibitory neurons revealed reduced expression of circadian rhythm network genes. Further assessment for the role of circadian rhythms using a jet lag paradigm modestly exacerbated disease. These data demonstrate that early translatome responses to neurodegeneration emerge prior to other signs of disease and are unique to different cell types. Therapeutic strategies may need to target multiple pathways, each in specific populations of cells, early in the disease process.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3