Integration of vascular progenitors into functional blood vessels represents a novel mechanism of vascular growth

Author:

Metikala SanjeevaORCID,Warkala Michael,Chetty Satish Casie,Chestnut Brendan,Plender Elizabeth,Nester Olivia,Astrof SophieORCID,Sumanas SauliusORCID

Abstract

SummaryDuring embryogenesis, the initial vascular network is thought to form by the process of vasculogenesis, or the specification of vascular progenitors de novo. After the initial blood circulation has been established, the majority of later-forming vessels are thought to arise by angiogenesis from the already established vasculature. Here we show that new vascular progenitors in zebrafish embryos contribute to functional vasculature even after blood circulation has been established. Based on the expression analysis of early vascular progenitor markers etv2 and tal1, we characterized a novel site of late vasculogenesis (termed secondary vascular field, SVF), located bilaterally along the yolk extension. Using time-lapse imaging of etv2 reporter lines, we show that SVF cells migrate and incorporate into functional blood vessels and contribute to the formation of the posterior cardinal vein and subintestinal vasculature, suggesting a novel mode of vascular growth. We further demonstrate that SVF cells participate in vascular recovery after chemical ablation of vascular endothelial cells. Inducible inhibition of etv2 function prevented SVF cell differentiation and resulted in the defective formation of subintestinal vasculature. In addition, we performed single-cell RNA-seq analysis to identify the transcriptional profile of SVF cells, which demonstrated similarities and differences between the transcriptomes of SVF cells and early vascular progenitors. Our results characterize a novel mechanism of how new vascular progenitors incorporate into established vasculature and revise our understanding of basic mechanisms that regulate vascular development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3