Directed evolution of colE1 plasmid replication compatibility: a fast tractable tunable model for investigating biological orthogonality

Author:

Chaillou SantiagoORCID,Stamou Eleftheria-Pinelopi,Torres Leticia,Riesco Ana B.,Hazelton Warren,Pinheiro Vitor B.ORCID

Abstract

AbstractPlasmids of the ColE1 family are among the most frequently used plasmids in molecular biology. They were adopted early in the field for many biotechnology applications, and as model systems to study plasmid biology. The mechanism of replication of ColE1 plasmids is well understood, involving the interaction between a plasmid-encoded sense-antisense gene pair (RNAI and RNAII). Because of its mechanism of replication, bacterial cells cannot maintain two different plasmids with the same origin, with one being rapidly lost from the population – a process known as plasmid incompatibility. While mutations in the regulatory genes RNAI and RNAII have been reported to make colE1 plasmids more compatible, there has been no attempt to engineer compatible colE1 origins, which can be used for multi-plasmid applications and that can bypass design constrains created by the current limited plasmid origin repertoire available. Here, we show that by targeting sequence diversity to the loop regions of RNAI (and RNAII), it is possible to select new viable colE1 origins that are compatible with the wild-type one. We demonstrate origin compatibility is not simply determined by sequence divergence in the loops, and that pairwise compatibility is not an accurate guide for higher order interactions. We identify potential principles to engineer plasmid copy number independently from other regulatory strategies and we propose plasmid compatibility as a tractable model to study biological orthogonality. New characterised plasmid origins increase flexibility and accessible complexity of design for challenging synthetic biology applications where biological circuits can be dispersed between multiple independent genetic elements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3