Abstract
AbstractMyo1e is a non-muscle motor protein enriched in the podocyte foot processes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Here, we set out to differentiate between the pathogenic and neutral MYO1E variants identified in SRNS patients by exome sequencing. Based on protein sequence conservation and structural predictions, two mutations in the motor domain, T119I and D388H, were selected for this study. EGFP-tagged Myo1e constructs were delivered into the Myo1e-KO podocytes via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculoviral expression system and used to measure Myo1e ATPase and motor activity in vitro. Both mutants were expressed as full-length proteins in the Myo1e-KO podocytes. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs) in podocytes. In contrast, the D388H variant localization was similar to the WT. Surprisingly, the dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting that this mutation also affects Myo1e activity. The ATPase activity and the ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting the findings from cell-based experiments. The experimental pipeline developed in this study allowed us to determine that the T119I and D388H mutations appear to be pathogenic and gain additional knowledge in the Myo1e role in podocytes. This workflow can be applied to the future characterization of novel MYO1E variants associated with SRNS.
Publisher
Cold Spring Harbor Laboratory