Abstract
AbstractVoluntary movements are accompanied by increased oscillatory activity or synchronization in the gamma range (> 25.5 Hz) within the sensorimotor system. Despite the extensive literature about movement-related gamma synchronization, the specific role of gamma oscillations for movement control is still debated. In this study, we characterized movement-related gamma oscillatory dynamics and its relationship with movement characteristics based on 256-channels EEG recordings in 64 healthy subjects while performing fast and uncorrected reaching movements to targets located at three distances. We found that movement-related gamma synchronization occurred during both movement planning and execution, albeit with different gamma peak frequencies and topographies. Also, the amplitude of gamma synchronization in both planning and execution increased with target distance. Additional analysis of phase coherence revealed a gamma-coordinated long-range network involving occipital, frontal and central regions during movement execution. Gamma synchronization amplitude and phase coherence pattern reliably predicted peak velocity amplitude and timing, thus suggesting that cortical gamma oscillations play a significant role in the selection of appropriate kinematic parameters during planning and in their implementation during movement execution.
Publisher
Cold Spring Harbor Laboratory