Abstract
AbstractInterleukin-22 (IL-22), a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and a non-functional dimer. Monomeric IL-22 (mIL-22) was highly purified through a series of three separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate signal transducer and activator of transcription 3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.
Publisher
Cold Spring Harbor Laboratory