The C. albicans virulence factor Candidalysin polymerizes in solution to form membrane pores and damage epithelial cells

Author:

Russell Charles M.ORCID,Schaefer Katherine G.,Dixson Andrew,Gray Amber L.H.,Pyron Robert J.,Alves Daiane S.,Moore Nicholas,Conley Elizabeth A.,White Tommi A.,Do Thanh,King Gavin M.ORCID,Barrera Francisco N.ORCID

Abstract

AbstractThe pathogenic fungus Candida albicans causes severe invasive candidiasis. C. albicans infection requires the action of the virulence factor Candidalysin (CL), which damages the plasma membrane of the target human cells. However, the molecular mechanism that CL uses to permeabilize membranes is poorly understood. We employed complementary biophysical, modeling, microscopy, and cell biology methods to reveal that CL forms membrane pores using a unique molecular mechanism. Unexpectedly, it was observed that CL readily assembles into linear polymers in solution. The basic structural unit in polymer formation is a CL 8-mer, which is sequentially added into a string configuration. Finally, the linear polymers can close into a loop. Our data indicate that CL loops spontaneously insert into the membrane to become membrane pores. We identified a CL mutation (G4W) that inhibited the formation of polymers in solution and prevented formation of pores in different synthetic lipid membranes systems. Studies in epithelial cells showed that G4W CL failed to activate the danger response signaling pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of thousands of CL pores by atomic force microscopy revealed the co-existence of simple depressions and complex pores decorated with protrusions. Imaging and modeling indicate that the two types of pores are formed by CL molecules assembled into alternate orientations. We propose that this structural rearrangement represents a maturation mechanism that might stabilize pore formation to achieve more robust cellular damage. Taken together, the data show that CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution directly leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3