Graph Transformer for drug response prediction

Author:

Chu Thang,Nguyen TuanORCID

Abstract

AbstractBackgroundPrevious models have shown that learning drug features from their graph representation is more efficient than learning from their strings or numeric representations. Furthermore, integrating multi-omics data of cell lines increases the performance of drug response prediction. However, these models showed drawbacks in extracting drug features from graph representation and incorporating redundancy information from multi-omics data. This paper proposes a deep learning model, GraTransDRP, to better drug representation and reduce information redundancy. First, the Graph transformer was utilized to extract the drug representation more efficiently. Next, Convolutional neural networks were used to learn the mutation, meth, and transcriptomics features. However, the dimension of transcriptomics features is up to 17737. Therefore, KernelPCA was applied to transcriptomics features to reduce the dimension and transform them into a dense presentation before putting them through the CNN model. Finally, drug and omics features were combined to predict a response value by a fully connected network. Experimental results show that our model outperforms some state-of-the-art methods, including GraphDRP, GraOmicDRP.Availability of data and materialshttps://github.com/chuducthang77/GraTransDRP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3