Reassembling a cannon in the DNA defense arsenal: genetics of StySA, a BREX phage exclusion system in Salmonella lab strains

Author:

Zaworski Julie,Dagva Oyut,Brandt Julius,Baum ChloéORCID,Ettwiller Laurence,Fomenkov AlexeyORCID,Raleigh Elisabeth A.ORCID

Abstract

AbstractUnderstanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX systems, RM-like activities that employ host protection by DNA modification but replication arrest without evident nuclease action on unmodified phage DNA. We show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a BREX homolog. The stySA29 allele of the hybrid strain LB5000 carries a mutated version of the ancestral LT2 BREX system. Surprisingly, both a restriction and a methylation defect are observed for this lineage despite lack of mutations in brxX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (μ) in C-terminal domains. To avoid plasmid artifacts and potential stoichiometric interference, we chose to investigate this system in situ, replacing the mutated pglZμ and brxCμ genes with wild type (WT). PglZ-WT supports methylation in the presence of either BrxCμ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction of phage L requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. Disruption of four other CDS with cat cassettes still permitted modification, suggesting that BrxC, PglZ and BrxX are principal components of the modification activity. BrxL is required for restriction only. A partial disruption of brxL disrupts transcription globally.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3