Min waves without MinC can pattern FtsA-FtsZ filaments on model membranes

Author:

Godino Elisa,Doerr Anne,Danelon Christophe

Abstract

AbstractAlthough the essential proteins that drive bacterial cytokinesis have been identified and reconstituted in vitro, the precise mechanisms by which they dynamically interact to enable symmetrical division are largely unknown. In Escherichia coli, cell division begins with the formation of a proto-ring composed of FtsZ and its membrane-tethering proteins FtsA and ZipA. In the broadly proposed molecular scenario for ring positioning, Min waves composed of MinD and MinE distribute the FtsZ-polymerization inhibitor MinC away from mid-cell, where the Z-ring can form. Therefore, MinC is believed to be an essential element connecting the Min and FtsZ systems. Here, by using cell-free gene expression on planar lipid membranes, we demonstrate that MinDE drive the formation of dynamic, antiphase patterns of FtsZ-FtsA co-filaments even in the absence of MinC. This behavior is also observed when the proteins are compartmentalized inside microdroplets. These results suggest that Z-ring positioning may be achieved with a more minimal set of proteins than previously envisaged, providing a fresh perspective about the role of MinC. Moreover, we propose that MinDE oscillations may constitute the minimal localization mechanism of an FtsA-FtsZ constricting ring in a prospective synthetic cell.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3