Unification of optimal targeting methods in Transcranial Electrical Stimulation

Author:

Fernandez-Corazza MarianoORCID,Turovets SergeiORCID,Muravchik CarlosORCID

Abstract

AbstractOne of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest (ROI), and given electric current limits for safety, how much current should be delivered by each electrode for optimal targeting? Several solutions, apparently unrelated, have been independently proposed depending on how “optimality” is defined and on how this optimization problem is stated mathematically. Among them, there are closed-formula solutions such as ones provided by the least squares (LS) or weighted LS (WLS) methods, that attempt to fit a desired stimulation pattern at ROI and non-ROI, or reciprocity-based solutions, that maximize the directional dose at ROI under safety constraints. A more complete optimization problem can be stated as follows: maximize directional dose at ROI, limit dose at non-ROI, and constrain total injected current and current per electrode (safety constraints). To consider all these constraints (or some of them) altogether, numerical convex or linear optimization solvers are required. We theoretically demonstrate in this work that LS, WLS and reciprocity-based closed-form solutions are particular solutions to the complete optimization problem stated above, and we validate these findings with simulations on an atlas head model. Moreover, the LS and reciprocity solutions are the two opposite cases emerging under variation of one parameter of the optimization problem, the dose limit at non-ROI. LS solutions belong to one extreme case, when the non-ROI dose limit is strictly imposed, and reciprocity-based solutions belong to the opposite side, i.e., when this limit is loose. As we couple together most optimization approaches published so far, these findings will allow a better understanding of the nature of the TES optimization problem and help in the development of advanced and more effective targeting strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3