Abstract
AbstractThe stochastic simulation algorithm commonly known as Gillespie’s algorithm (originally derived for modelling well-mixed systems of chemical reactions) is now used ubiquitously in the modelling of biological processes in which stochastic effects play an important role. In well mixed scenarios at the sub-cellular level it is often reasonable to assume that times between successive reaction/interaction events are exponentially distributed and can be appropriately modelled as a Markov process and hence simulated by the Gillespie algorithm. However, Gillespie’s algorithm is routinely applied to model biological systems for which it was never intended. In particular, processes in which cell proliferation is important (e.g. embryonic development, cancer formation) should not be simulated naively using the Gillespie algorithm since the history-dependent nature of the cell cycle breaks the Markov process. The variance in experimentally measured cell cycle times is far less than in an exponential cell cycle time distribution with the same mean.Here we suggest a method of modelling the cell cycle that restores the memoryless property to the system and is therefore consistent with simulation via the Gillespie algorithm. By breaking the cell cycle into a number of independent exponentially distributed stages we can restore the Markov property at the same time as more accurately approximating the appropriate cell cycle time distributions. The consequences of our revised mathematical model are explored analytically as far as possible. We demonstrate the importance of employing the correct cell cycle time distribution by recapitulating the results from two models incorporating cellular proliferation (one spatial and one non-spatial) and demonstrating that changing the cell cycle time distribution makes quantitative and qualitative differences to the outcome of the models. Our adaptation will allow modellers and experimentalists alike to appropriately represent cellular proliferation - vital to the accurate modelling of many biological processes - whilst still being able to take advantage of the power and efficiency of the popular Gillespie algorithm.
Publisher
Cold Spring Harbor Laboratory
Reference49 articles.
1. B. Alberts , D. Bray , J. Lewis , M. Raff , K. Roberts , and J.D. Watson . Molecular Biology of the Cell. New York: Garland Science, 4th edition, 2002.
2. M. Baar , L. Coquille , H. Mayer , M. Hölzel , M. Rogava , T. Tüting , and A. Bovier . A stochastic model for immunotherapy of cancer. Sci. Rep., 6, 2016.
3. Correcting mean-field approximations for birth-death-movement processes;Phys. Rev. E,2010
4. The simplicity of completion time distributions for common complex biochemical processes;Phys. Biol,2009
5. Simulating non-markovian stochastic processes;Phys. Rev. E,2014
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献