Cognitive and non-cognitive outcomes associated with student engagement in a novel brain chemoarchitecture mapping course-based undergraduate research experience

Author:

D’Arcy Christina E.,Martinez Anais,Khan Arshad M.ORCID,Olimpo Jeffrey T.

Abstract

AbstractCourse-based undergraduate research experiences (CUREs) engage emerging scholars in the authentic process of scientific discovery, and foster their development of content knowledge, motivation, and persistence in the science, technology, engineering, and mathematics (STEM) disciplines. Importantly, authentic research courses simultaneously offer investigators unique access to an extended population of students who receive education and mentoring in conducting scientifically relevant investigations and who are thus able to contribute effort toward big-data projects. While this paradigm benefits fields in neuroscience, such as atlas-based brain mapping of nerve cells at the tissue level, there are few documented cases of such laboratory courses offered in the domain.Here, we describe a curriculum designed to address this deficit, evaluate the scientific merit of novel student-produced brainatlasmapsofimmunohistochemically-identifiednervecellpopulations for the rat brain, and assess shifts in science identity, attitudes, and science communication skills of students engaged in the introductory-level Brain Mapping and Connectomics (BM&C) CURE. BM&C students reported gains in research and science process skills following participation in the course. Furthermore, BM&C students experienced a greater sense of science identity, including a greater likelihood to discuss course activities with non-class members compared to their non-CURE counterparts. Importantly, evaluation of student-generated brain atlas maps indicated that the course enabled students to produce scientifically valid products and make new discoveries to advance the field of neuroanatomy. Together, these findings support the efficacy of the BM&C course in addressing the relatively esoteric demands of chemoarchitectural brain mapping.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. American Association for the Advancement of Science (2011) Vision and change in undergraduate biology education: A call to action. Washington, D.C.: American Association for the Advancement of Science.

2. Assessment of Course-Based Undergraduate Research Experiences: A Meeting Report

3. Making a Difference in Science Education

4. Ballen CJ , Blum JE , Brownell S , Hebert S , Hewlett J , Klein JR , McDonald EA , Monti DL , Nold SC , Slemmons KE , Soneral PAG , & Cotner S (2017) A call to develop course-based undergraduate research experiences (CUREs) for nonmajors courses. CBE Life Sci. Educ. 16(2), mr2.

5. Bonwell CC , & Eison JA (1991) Active Learning: Creating Excitement in the Classroom. ASHE-ERIC Higher Education Report No. 1. Washington, DC: The George Washington University, School of Education and Human Development.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3