FARFAR2: Improved de novo Rosetta prediction of complex global RNA folds

Author:

Watkins Andrew M.ORCID,Das RhijuORCID

Abstract

SummaryMethods to predict RNA 3D structures from sequence are needed to understand the exploding number of RNA molecules being discovered across biology. As assessed during community-wide RNA-Puzzles trials, Rosetta’s Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) enables accurate prediction of complex folds, but it remains unclear how much human intervention and experimental guidance is needed to achieve this performance. Here, we present FARFAR2, a protocol integrating recent innovations with updated RNA fragment libraries and helix modeling. In 16 of 21 RNA-Puzzles revisited without experimental data or expert intervention, FARFAR2 recovers structures that are more accurate than the original models submitted by our group and other participants during the RNA-Puzzles trials. In five prospective tests, pre-registered FARFAR2 models for riboswitches and adenovirus VA-I achieved 3–8 Å RMSD accuracies. Finally, we present a server and three large model archives (FARFAR2-Classics, FARFAR2-Motifs, and FARFAR2-Puzzles) to guide future applications and advances.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3