Abstract
AbstractPacBio sequencing generates much longer reads compared to second-generation sequencing technologies, with a trade-off of lower throughput, higher error rate and more cost per base. The PacBio transcriptome of the breast cancer cell line MCF-7 was found to have ∼300 transcripts un-annotated in the current GENCODE (v25) or RefSeq, and missing in the liver, heart and brain PacBio transcriptomes [1]. RACE-sequencing (RACE-seq [2]) extends a well-established method of characterizing cDNA molecules generated by rapid amplification of cDNA ends (RACE [3]) using high-throughput sequencing technologies, reducing costs compared to PacBio. Here, shorter fragments of ∼150 transcripts were found to be present in seven tissues analyzed in a recent RACE-seq study (Accid:ERP012249) [4]. These transcripts were not among the ∼2500 novel transcripts reported in that study, tested separately here using the genomic coordinates provided, although ‘all curated novel isoforms were incorporated into the human GENCODE set (v22)’ in that study. Non-redundancy analysis of the exclusive transcripts identified one transcript mapping to Chr1 with seven different splice variants, and erroneously mapped to Chr15 (PAC clone 15q11-q13) from the Prader-Willi/Angelman Syndrome region (Accid:AC004137.1). Finally, there are ∼100 non-redundant transcripts missing in the seven tissues, in addition to other three tissues analyzed previously. Their absence in GENCODE and RefSeq databases rule them out as commonly transcribed regions, further increasing their likelihood as biomarkers.
Publisher
Cold Spring Harbor Laboratory