Two resistance nodulation division-family efflux pumps inChromobacteriumspecies and their role in antibiotic resistance and tolerance

Author:

Benomar Saida,Evans Kara C,Unckless Robert L,Chandler Josephine RORCID

Abstract

ABSTRACTVery little is known of the antibiotic resistance mechanisms of members of theChromobacteriumgenus. In previous studies ofChromobacterium subtsugae(formerlyC. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM). Here, we show thecdeAB-oprMgenes are widely distributed in members of theChromobacteriumgenus. We use antimicrobial susceptibility testing with a CV017cdeAB-oprMmutant to show the products of these genes confers resistance to a variety of antibiotics including ciprofloxacin, a clinically important antibiotic. We also identified a related RND-family pump,cseAB-oprN, in the genome of CV017 and otherC. subtsugaespecies, that is not present in other members of theChromobacteriumgenus. We demonstrate that CdeAB-OprM and CseAB-OprN are both transcriptionally induced in CV017 cells treated with sub-lethal antibiotic concentrations and they are important for induction of tolerance to different antibiotics. While CdeAB-OprM has a broad antibiotic specificity, the CseAB-OprN system is highly specific for a ribosome-targeting antibiotic produced by the saprophytic bacteriumBurkholderia thailandensis,bactobolin. Finally, we use a previously developedB. thailandensis-C. subtsugaeCV017 co-culture model to demonstrate that adding sub-lethal bactobolin at the beginning of co-culture growth increases the ability of CV017 to compete withB. thailandensisin a manner that is dependent on the CseAB-OprN system. Our results provide new information on the antibiotic resistance mechanisms ofChromobacteriumspecies and highlight the importance of efflux pumps during competition with other bacterial species.IMPORTANCEThis study describes two closely related efflux pumps in members of theChromobacteriumgenus, which includes opportunistic but often-fatal pathogens and species with highly versatile metabolic capabilities. Efflux pumps remove antibiotics from the cell and are important for antibiotic resistance. One of these pumps is broadly distributed in theChromobacteriumgenus and increases resistance to clinically relevant antibiotics. The other efflux pump is present only inChromobacterium subtsugaeand is highly specific for bactobolin, an antibiotic produced by the soil saprophyteBurkholderia thailandensis. We demonstrate these pumps can be activated to increase resistance by their antibiotic substrates, and that this activation is important forC. subtsugaeto survive in a laboratory competition experiment withB. thailandensis.These results have implications for managing antibiotic-resistantChromobacteriuminfections, bioengineering ofChromobacteriumspecies, and for understanding the evolution of efflux pumps.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3