Quantitative Analysis of Global Protein Stability Rates in Tissues

Author:

McClatchy Daniel B.,Gao Yu,Lavallée-Adam Mathieu,Yates John R.

Abstract

AbstractProtein degradation is an essential mechanism for maintaining homeostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases, but quantitation of global stability rates has not yet been achieved in tissues. We have developed QUAD (Quantification of Azidohomoalanine Degradation), a technique to quantitate global protein degradation using mass spectrometry. Azidohomoalanine (AHA) is pulsed into mouse tissues through their diet. The mice are then returned to a normal diet and the decrease of AHA abundance can be quantitated in the proteome. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles, post-translation modifications, and protein functions were enriched with different stability patterns. Surprisingly, subunits of the TRIC molecular chaperonin possessed markedly distinct stability trajectories in the brain. Further investigation revealed that these subunits also possessed different subcellular localization and expression patterns that were uniquely altered with age and in Alzheimer’s disease transgenic mice, indicating a potential non-canonical chaperonin. Finally, QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which may lead to new insights and hypotheses in basic and translational research.SummaryProtein degradation is an important component of the proteostasis network, but no techniques are available to globally quantitate degradation rates in tissues. In this study, we demonstrate a new method QUAD (Quantification of Azidohomoalanine Degradation) that can accurately quantitate degradation rates in tissues. QUAD analysis of mouse tissues reveal that unique degradation trends can define different tissue proteomes. Within a tissue, specific protein characteristics are correlated with different levels of protein stability. Further investigation of the TRIC chaperonin with strikingly different subunit stabilities suggests a non-canonical chaperonin in brain tissue. Consistent with the theory that the proteostasis network is compromised with age, we discovered that protein stability is globally enhanced in brains of old mice compared to young mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3