Author:
McClatchy Daniel B.,Gao Yu,Lavallée-Adam Mathieu,Yates John R.
Abstract
AbstractProtein degradation is an essential mechanism for maintaining homeostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases, but quantitation of global stability rates has not yet been achieved in tissues. We have developed QUAD (Quantification of Azidohomoalanine Degradation), a technique to quantitate global protein degradation using mass spectrometry. Azidohomoalanine (AHA) is pulsed into mouse tissues through their diet. The mice are then returned to a normal diet and the decrease of AHA abundance can be quantitated in the proteome. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles, post-translation modifications, and protein functions were enriched with different stability patterns. Surprisingly, subunits of the TRIC molecular chaperonin possessed markedly distinct stability trajectories in the brain. Further investigation revealed that these subunits also possessed different subcellular localization and expression patterns that were uniquely altered with age and in Alzheimer’s disease transgenic mice, indicating a potential non-canonical chaperonin. Finally, QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which may lead to new insights and hypotheses in basic and translational research.SummaryProtein degradation is an important component of the proteostasis network, but no techniques are available to globally quantitate degradation rates in tissues. In this study, we demonstrate a new method QUAD (Quantification of Azidohomoalanine Degradation) that can accurately quantitate degradation rates in tissues. QUAD analysis of mouse tissues reveal that unique degradation trends can define different tissue proteomes. Within a tissue, specific protein characteristics are correlated with different levels of protein stability. Further investigation of the TRIC chaperonin with strikingly different subunit stabilities suggests a non-canonical chaperonin in brain tissue. Consistent with the theory that the proteostasis network is compromised with age, we discovered that protein stability is globally enhanced in brains of old mice compared to young mice.
Publisher
Cold Spring Harbor Laboratory