Hybrid selection as a method of increasing mapping power for radiation hybrids.

Author:

Jones H B

Abstract

Radiation hybrids have become a widely used tool for physical mapping. A drawback of the technique is that large numbers of hybrids are required to construct robust, high-resolution maps. The information contained within a panel of radiation hybrids is limited by the frequency of retention of chromosomal fragments from the donor cell line. In almost all experiments to date, the retention frequency has been below the optimal level; therefore, many hybrids are needed to produce high-quality maps. Because of the labor-intensive nature of large-scale mapping projects, it is important to make panels as small as possible. One method that has been adopted is to produce initially a large number of hybrids that are all typed with a few loci. Those hybrids showing satisfactorily high retention are admitted to the final panel and the rest are discarded. In this way, a panel of radiation hybrids with higher than expected retention can be created. Methods for conducting such a selection regime are discussed. To investigate the potential advantages of selecting hybrids based on their retention frequency, simulations were run under a variety of conditions. As expected panels with high retention (40%) provided better mapping resources than panels with lower (20%) retention. Beginning with an initial panel of 200 hybrids, comparisons of a random sample of 100 hybrids and the set of those 100 hybrids showing the highest marker retention demonstrated that selection may not be always the best strategy despite the increase in mean retention it yields. The selection of hybrids containing large numbers of fragments leads to an overestimation of the frequency of radiation-induced breaks. When breaks occur with high frequency (for example, when high radiation doses are used), the selection of hybrids leads to a loss of linkage and hence an inability to order the markers. As such, the merits of screening hybrids depends on both the radiation dose and the desired map resolution.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3