Abstract
AbstractObesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. Objective: To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). Methods: We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. Results: Bacterial community composition showed differences in species type (β-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio ofPrevotellatoBacteroidesin the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance ofPrevotella copri, among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). Conclusions: Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.
Publisher
Cold Spring Harbor Laboratory