Complement-mediated killing of bacteria by mechanical destabilization of the cell envelope

Author:

Benn Georgina,Bortolini Christian,Roberts David M.,Pyne Alice L. B.ORCID,Holden SéamusORCID,Hoogenboom Bart W.ORCID

Abstract

Complement proteins eliminate Gram-negative bacteria in serum via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on livingEscherichia coli(E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. Initially, bacteria survived despite the formation of hundreds of MACs randomly distributed over the cell surface. This was followed by larger-scale disruption of the outer membrane, including propagating defects and fractures, and by an overall swelling and stiffening of the bacterial surface, which precede inner membrane permeation. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, causing inner membrane permeation and cell death. This represents a previously unknown route to bacterial cell death that could be exploited by novel antibiotic treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3