Author:
Jameson Kelly G.,Kazmi Sabeen A.,Son Celine,Mazdeyasnan Donya,Leshan Emma,Vuong Helen E.,Paramo Jorge,Lopez-Romero Arlene,Yang Long,Schweizer Felix E.,Hsiao Elaine Y.
Abstract
SUMMARYThe vagus nerve is proposed to enable communication between the gut microbiome and brain, but activity-based evidence is lacking. Herein, we assess the extent of gut microbial influences on afferent vagal activity and metabolite signaling mechanisms involved. We find that mice reared without microbiota (germ-free, GF) exhibit decreased vagal afferent tone relative to conventionally colonized mice (specific pathogen-free, SPF), which is reversed by colonization with SPF microbiota. Perfusing non-absorbable antibiotics (ABX) into the small intestine of SPF mice, but not GF mice, acutely decreases vagal activity, which is restored upon re-perfusion with bulk lumenal contents or sterile filtrates from the small intestine and cecum of SPF, but not GF, mice. Of several candidates identified by metabolomic profiling, microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate stimulate vagal activity with varied response kinetics, which is blocked by co-perfusion of pharmacological antagonists of FFAR2, TGR5, and TRPA1, respectively, into the small intestine. At the single-unit level, serial perfusion of each metabolite class elicits more singly responsive neurons than dually responsive neurons, suggesting distinct neuronal detection of different microbiome- and macronutrient-dependent metabolites. Finally, microbial metabolite-induced increases in vagal activity correspond with activation of neurons in the nucleus of the solitary tract, which is also blocked by co-administration of their respective receptor antagonists. Results from this study reveal that the gut microbiome regulates select metabolites in the intestinal lumen that differentially activate chemosensory vagal afferent neurons, thereby enabling microbial modulation of interoceptive signals for gut-brain communication.HIGHLIGHTSMicrobiota colonization status modulates afferent vagal nerve activityGut microbes differentially regulate metabolites in the small intestine and cecumSelect microbial metabolites stimulate vagal afferents with varied response kineticsSelect microbial metabolites activate vagal afferent neurons and brainstem neurons via receptor-dependent signaling
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献