Vagal interoception of microbial metabolites from the small intestinal lumen

Author:

Jameson Kelly G.,Kazmi Sabeen A.,Son Celine,Mazdeyasnan Donya,Leshan Emma,Vuong Helen E.,Paramo Jorge,Lopez-Romero Arlene,Yang Long,Schweizer Felix E.,Hsiao Elaine Y.

Abstract

SUMMARYThe vagus nerve is proposed to enable communication between the gut microbiome and brain, but activity-based evidence is lacking. Herein, we assess the extent of gut microbial influences on afferent vagal activity and metabolite signaling mechanisms involved. We find that mice reared without microbiota (germ-free, GF) exhibit decreased vagal afferent tone relative to conventionally colonized mice (specific pathogen-free, SPF), which is reversed by colonization with SPF microbiota. Perfusing non-absorbable antibiotics (ABX) into the small intestine of SPF mice, but not GF mice, acutely decreases vagal activity, which is restored upon re-perfusion with bulk lumenal contents or sterile filtrates from the small intestine and cecum of SPF, but not GF, mice. Of several candidates identified by metabolomic profiling, microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate stimulate vagal activity with varied response kinetics, which is blocked by co-perfusion of pharmacological antagonists of FFAR2, TGR5, and TRPA1, respectively, into the small intestine. At the single-unit level, serial perfusion of each metabolite class elicits more singly responsive neurons than dually responsive neurons, suggesting distinct neuronal detection of different microbiome- and macronutrient-dependent metabolites. Finally, microbial metabolite-induced increases in vagal activity correspond with activation of neurons in the nucleus of the solitary tract, which is also blocked by co-administration of their respective receptor antagonists. Results from this study reveal that the gut microbiome regulates select metabolites in the intestinal lumen that differentially activate chemosensory vagal afferent neurons, thereby enabling microbial modulation of interoceptive signals for gut-brain communication.HIGHLIGHTSMicrobiota colonization status modulates afferent vagal nerve activityGut microbes differentially regulate metabolites in the small intestine and cecumSelect microbial metabolites stimulate vagal afferents with varied response kineticsSelect microbial metabolites activate vagal afferent neurons and brainstem neurons via receptor-dependent signaling

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3