A cross-attention transformer encoder for paired sequence data

Author:

Dens CederORCID,Laukens KrisORCID,Meysman PieterORCID,Bittremieux WoutORCID

Abstract

AbstractTransformer-based sequence encoding architectures are often limited to a single-sequence input while some tasks require a multi-sequence input. For example, the peptide–MHCII binding prediction task where the input consists of two protein sequences. Current workarounds to solve this input-type mismatch lack resemblance with the biological mechanisms behind the task. As a solution, we propose a novel cross-attention transformer encoder that creates a cross-attended embedding of both input sequences. We compare its classification performance on the peptide–MHCII binding prediction task to a baseline logistic regression model and a default transformer encoder. Finally, we make visualizations of the attention layers to show how the different models learn different patterns.

Publisher

Cold Spring Harbor Laboratory

Reference9 articles.

1. J. Devlin , M.-W. Chang , K. Lee , and K. Toutanova , ‘BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding’, ArXiv181004805 Cs, May 2019, Accessed: Jan. 26, 2021. [Online]. Available: http://arxiv.org/abs/1810.04805

2. R. Rao et al., ‘Evaluating Protein Transfer Learning with TAPE’, in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2019. Accessed: Apr. 05, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/37f65c068b7723cd7809ee2d31d7861c-Absract.htmlt

3. ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing

4. ProteinBERT: a universal deep-learning model of protein sequence and function

5. BERTMHC: improved MHC–peptide class II interaction prediction with transformer and multiple instance learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3