Integrated Molecular-Phenotypic Profiling Reveals Metabolic Control of Morphological Variation in Stembryos

Author:

Villaronga Luque AlbaORCID,Savill RyanORCID,López-Anguita NataliaORCID,Bolondi AdrianoORCID,Garai Sumit,Gassaloglu Seher Ipek,Poddar Aayush,Bulut-Karslioglu AydanORCID,Veenvliet Jesse VORCID

Abstract

SUMMARYMammalian stem-cell-based models of embryo development (stembryos) hold great promise in basic and applied research. However, considerable phenotypic variation despite identical culture conditions limits their potential. The biological processes underlying this seemingly stochastic variation are poorly understood. Here, we investigate the roots of this phenotypic variation by intersecting transcriptomic states and morphological history of individual stembryos across stages modeling post-implantation and early organogenesis. Through machine learning and integration of time-resolved single-cell RNA-sequencing with imaging-based quantitative phenotypic profiling, we identify early features predictive of the phenotypic end-state. Leveraging this predictive power revealed that early imbalance of oxidative phosphorylation and glycolysis results in aberrant morphology and a neural lineage bias that can be corrected by metabolic interventions. Collectively, our work establishes divergent metabolic states as drivers of phenotypic variation, and offers a broadly applicable framework to chart and predict phenotypic variation in organoid systems. The strategy can be leveraged to identify and control underlying biological processes, ultimately increasing the reproducibility of in vitro systems.HighlightsTime-resolved single-cell RNA-sequencing and imaging-based quantitative charting of hundreds of individual stembryos generates molecular and phenotypic fingerprintsMachine learning and integration of molecular and phenotypic fingerprints identifies features and biological processes predictive of phenotypic end-stateEarly imbalance of oxidative phosphorylation and glycolysis results in aberrant morphology and cellular compositionMetabolic interventions tune stembryo end-state and can correct derailment of differentiation outcomes

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3