AlphaFold2 has more to learn about protein energy landscapes

Author:

Chakravarty Devlina,Schafer Joseph W.,Chen Ethan A.,Thole Joseph R.,Porter Lauren L.

Abstract

AbstractRecent work suggests that AlphaFold2 (AF2)–a deep learning-based model that can accurately infer protein structure from sequence–may discern important features of folded protein energy landscapes, defined by the diversity and frequency of different conformations in the folded state. Here, we test the limits of its predictive power on fold-switching proteins, which assume two structures with regions of distinct secondary and/or tertiary structure. Using several implementations of AF2, including two published enhanced sampling approaches, we generated >280,000 models of 93 fold-switching proteins whose experimentally determined conformations were likely in AF2’s training set. Combining all models, AF2 predicted fold switching with a modest success rate of ∼25%, indicating that it does not readily sample both experimentally characterized conformations of most fold switchers. Further, AF2’s confidence metrics selected against models consistent with experimentally determined fold-switching conformations in favor of inconsistent models. Accordingly, these confidence metrics–though suggested to evaluate protein energetics reliably–did not discriminate between low and high energy states of fold-switching proteins. We then evaluated AF2’s performance on seven fold-switching proteins outside of its training set, generating >159,000 models in total. Fold switching was accurately predicted in one of seven targets with moderate confidence. Further, AF2 demonstrated no ability to predict alternative conformations of two newly discovered targets without homologs in the set of 93 fold switchers. These results indicate that AF2 has more to learn about the underlying energetics of protein ensembles and highlight the need for further developments of methods that readily predict multiple protein conformations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3