Movement-related increases in subthalamic activity optimize locomotion

Author:

Callahan Joshua W.,Morales Juan Carlos,Atherton Jeremy F.,Wang Dorothy,Kostic Selena,Bevan Mark D.

Abstract

SummaryThe subthalamic nucleus (STN) is traditionally thought to restrict movement. Lesion or prolonged STN inhibition increases movement vigor and propensity, while optogenetic excitation has opposing effects. Subthalamic and motor activity are also inversely correlated in movement disorders. However, most STN neurons typically exhibit movement-related increases in firing. To address this paradox, STN activity was recorded and manipulated in head-fixed mice at rest and during self-initiated and -paced treadmill locomotion. The majority of STN neurons (type 1) exhibited locomotion-dependent increases in activity, with half encoding the locomotor cycle. A minority of neurons exhibited dips in activity or were uncorrelated with movement. Brief optogenetic inhibition of the dorsolateral STN (where type 1 neurons are concentrated) slowed, dysregulated, and prematurely terminated locomotion. In Q175 Huntington’s disease mice analogous locomotor deficits were specifically linked to abnormal type 1 hypoactivity. Together these data argue that movement-related increases in STN activity contribute to optimal locomotor performance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3