Competition for resources during development drives allometric patterns in the grassSetaria

Author:

Dale ReneeORCID,Banan Darshi,Millman Britney,Leakey Andrew D.B.ORCID,Mukherji Shankar,Baxter IvanORCID

Abstract

AbstractGrasses grow a series of phytomers during development. The distance between successive leaves is determined by internode lengths. Grasses exhibit genetic, developmental, and environmental variability in phytomer number, but how this affects internode length, biomass, and height is unknown. We hypothesized that a generalized mathematical model of phytomer development wherein between-phytomer competition influences internode length distributions would be sufficient to explain internode length patterns in twoSetariagenotypes: weedy A10 and domesticated B100. Our model takes a novel approach that includes the vegetative growth of leaf blade, sheath, and internode at the individual phytomer level, and the shift to reproductive growth. To validate and test our mathematical model, we carried out a greenhouse experiment. We found that the rate of leaf emergence is consistent for both genotypes across development, and that the length of time spent elongating for the leaf and internode can be described as the ratio between the time of phytomer emergence and the elongation completion time. The validated model was simulated across all possible parameter values to predict the influence of phytomer number on internode length. This analysis predicts that different internode length distributions across different numbers of total phytomers are an emergent property, rather than a genotype-specific property requiring genotype-specific models. We applied the model to internode length only field data ofS. italicaaccession B100, grown under both well-watered and drought conditions. The model predicts that droughted plants reduce leaf elongation time, reduce resource allocation to the internodes, and overall experience slower growth. Together, model and data suggest that allometric patterns are driven by competition for resources among phytomer and the shift to reproductive growth inSetaria. The resulting model enables us to predict growth dynamics and final allometries at the phytomer level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3