Prognostic biomarkers of intracerebral hemorrhage identified using targeted proteomics and machine learning algorithms

Author:

Misra ShubhamORCID,Kawamura YukiORCID,Singh Praveen,Sengupta Shantanu,Nath Manabesh,Rahman Zuhaibur,Kumar Pradeep,Kumar Amit,Aggarwal PraveenORCID,Srivastava Achal K.,Pandit Awadh K.,Mohania Dheeraj,Prasad Kameshwar,Mishra Nishant K.,Vibha Deepti

Abstract

AbstractEarly prognostication of patient outcomes in intracerebral hemorrhage (ICH) is critical for patient care. We aim to investigate protein biomarkers’ role in prognosticating outcomes in ICH patients. We assessed 22 protein biomarkers using targeted proteomics in serum samples obtained from the ICH patient dataset (N=150). We defined poor outcomes as modified Rankin scale score of 3-6. We incorporated clinical variables and protein biomarkers in regression models and random forest-based machine learning algorithms to predict poor outcomes and mortality. We report Odds Ratio (OR) or Hazard Ratio (HR) with 95% Confidence Interval (CI). We used five-fold cross-validation and bootstrapping for internal validation of prediction models. We included 149 patients for 90-day and 144 patients with ICH for 180-day outcome analyses. In multivariable logistic regression, UCH-L1 (aOR 9.23; 95%CI 2.41-35.33), alpha-2-macroglobulin (5.57; 1.26-24.59), and Serpin-A11 (9.33; 1.09-79.94) were independent predictors of 90-day poor outcome; MMP-2 (6.32; 1.82-21.90) was independent predictor of 180-day poor outcome. In multivariable Cox regression models, IGFBP-3 (aHR 2.08; 1.24-3.48) predicted 90-day and MMP-9 (1.98; 1.19-3.32) predicted 180-day mortality. Using machine learning, UCH-L1 and APO-C1 predicted 90-day mortality, and UCH-L1, MMP-9, and MMP-2 predicted 180-day mortality. Overall, random forest models outperformed regression models for predicting 180-day poor outcomes (AUC 0.89), and 90-day (AUC 0.81) and 180-day mortality (AUC 0.81). Serum biomarkers independently predicted short-term poor outcomes and mortality after ICH. Further research utilizing a multiomics platform and temporal profiling is needed to explore additional biomarkers and refine predictive models for ICH prognosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3