Nowcasting Reported COVID-19 Hospitalizations Using De-Identified, Aggregated Medical Insurance Claims Data

Author:

Shen XuedaORCID,Rumack AaronORCID,Wilder Bryan,Tibshirani Ryan J.ORCID

Abstract

AbstractWe propose, implement, and evaluate a method for nowcasting the daily number of new COVID-19 hospitalizations, at the level of individual US states, based on de-identified, aggregated medical insurance claims data. Our analysis proceeds under a hypothetical scenario in which, during the Delta wave, states only report data on the first day of each month, and on this day, report COVID-19 hospitalization counts for each day in the previous month. In this hypothetical scenario (just as in reality), medical insurance claims data continues to be available daily. At the beginning of each month, we train a regression model, using all data available thus far, to predict hospitalization counts from medical insurance claims. We then use this model to nowcast the (unseen) values of COVID-19 hospitalization counts from medical insurance claims, at each day in the following month. Our analysis uses properly-versioned data, which would have been available in real-time, at the time predictions are produced. In spite of the difficulties inherent to real-time estimation (e.g., latency and backfill) and the complex dynamics behind COVID-19 hospitalizations themselves, we find overall that medical insurance claims can be an accurate predictor of hospitalization reports, with mean absolute errors typically around 0.4 hospitalizations per 100,000 people, i.e., proportion of variance explained around 75%. Perhaps more importantly, we find that nowcasts made using medical insurance claims can qualitatively capture the dynamics (upswings and downswings) of hospitalization waves, which are key features that inform public health decision-making.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. Assessing the utility of a smart thermometer and mobile application as a surveillance tool for influenza and influenza-like illness;Health Informatics Journal,2020

2. L. C. Brooks . Pancasting: Forecasting epidemics from provisional data. PhD thesis, Carnegie Mellon University, 2020.

3. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

4. Department of Health and Human Services. COVID-19 guidance for hospital reporting and FAQs for hospitals, hospital laboratory, and acute care facility data reporting, 2023. URL https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf.

5. Toward mandatory health insurance in low-income countries? An analysis of claims data in Tanzania;Health Economics,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3