Towards ultra-low-cost smartphone microscopy

Author:

Zhang Haoran,Zhang Weiyi,Zuo Zirui,Yang Jianlong

Abstract

AbstractThe outbreak of COVID-19 exposed the inadequacy of our technical tools for home health surveillance, and recent studies have shown the potential of smartphones as a universal optical microscopic imaging platform for such applications. However, most of them use laboratory-grade optomechanical components and transmitted illuminations to ensure focus tuning capability and imaging quality, which keeps the cost of the equipment high. Here we propose an ultra-low-cost solution for smartphone microscopy. To realize focus tunability, we designed a seesaw-like structure capable of converting large displacements on one side into small displacements on the other (reduced to ∼9.1%), which leverages the intrinsic flexibility of 3D printing materials. We achieved a focus-tuning accuracy of ∼ 5µm, which is 40 times higher than the machining accuracy of the 3D-printed lens holder itself. For microscopic imaging, we use an off-the-shelf smartphone camera lens as the objective and the built-in flashlight as the illumination. To compensate for the resulting image quality degradation, we developed a learning-based image enhancement method. We use the CycleGAN architecture to establish the mapping from smartphone microscope images to benchtop microscope images without pairing. We verified the imaging performance on different biomedical samples. Except for the smartphone, we kept the full costs of the device under 4 USD. We think these efforts to lower the costs of smartphone microscopes will benefit their applications in various scenarios, such as point-of-care testing, on-site diagnosis, and home health surveillance.Research highlightsWe propose a solution for ultra-low-cost smartphone microscopy. Utilizing the flexibility of 3D-printed material, we can achieve focusing accuracy of ∼ 5µm. Such a low-cost device will benefit point-of-care diagnosis and home health surveillance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3