Contextualized Networks Reveal Heterogeneous Transcriptomic Regulation in Tumors at Sample-Specific Resolution

Author:

Ellington Caleb N.ORCID,Lengerich Benjamin J.ORCID,Watkins Thomas B.K.,Yang Jiekun,Xiao Hanxi,Kellis ManolisORCID,Xing Eric P.

Abstract

AbstractCancers are shaped by somatic mutations, microenvironment, and patient background, each altering gene expression and regulation in complex ways, resulting in heterogeneous cellular states and dynamics. Inferring gene regulatory network (GRN) models from expression data can help characterize this regulation-driven heterogeneity, but network inference requires many statistical samples, traditionally limiting GRNs to cluster-level analyses that ignore intra-cluster heterogeneity. We propose to move beyond cluster-based analyses by usingcontextualizedlearning, a multi-task learning paradigm which allows us to infer sample-specific models using phenotypic, molecular, and environmental information pertinent to the model, encoded as the model’s “context” to be conditioned on. We unify three network model classes (Correlation, Markov, Neighborhood) and estimate context-specific GRNs for 7997 tumors across 25 tumor types, with each network contextualized by copy number and driver mutation profiles, tumor microenvironment, and patient demographics. Contextualized GRNs provide a structured view of expression dynamics at sample-specific resolution, which reveal co-expression modules in correlation networks (CNs), as well as cliques and independent regulatory elements in Markov Networks (MNs) and Neighborhood Regression Networks (NNs). Our generative modeling approach allows us to predict GRNs for unseen tumor types based on a pan-cancer model of how somatic mutations affect gene regulation. Finally, contextualized networks enable GRN-based precision oncology, explaining known biomarkers in terms of network-mediated effects, and leading to novel subtypings for thyroid, brain, and gastrointestinal tumors that improve survival prognosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contextualized: Heterogeneous Modeling Toolbox;Journal of Open Source Software;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3