Insect Detect: An open-source DIY camera trap for automated insect monitoring

Author:

Sittinger MaximilianORCID,Uhler JohannesORCID,Pink MaximilianORCID,Herz AnnetteORCID

Abstract

AbstractInsect monitoring is essential to design effective conservation strategies, which are indispensable to mitigate worldwide declines and biodiversity loss. For this purpose, traditional monitoring methods are widely established and can provide data with a high taxonomic resolution. However, processing of captured insect samples is often time-consuming and expensive, which limits the number of potential replicates. Automated monitoring methods can facilitate data collection at a higher spatiotemporal resolution with a comparatively lower effort and cost. Here, we present the Insect Detect DIY (do-it-yourself) camera trap for non-invasive automated monitoring of flower-visiting insects, which is based on low-cost off-the-shelf hardware components combined with open-source software. Custom trained deep learning models detect and track insects landing on an artificial flower platform in real time on-device and subsequently classify the cropped detections on a local computer. Field deployment of the solar-powered camera trap confirmed its resistance to high temperatures and humidity, which enables autonomous deployment during a whole season. On-device detection and tracking reliably estimated insect activity/abundance after metadata post-processing. Our insect classification model achieved a high top-1 accuracy on the test dataset and generalized well on a real-world dataset with captured insect images. The camera trap design and open-source software are highly customizable and can be adapted to different use cases. With custom trained detection and classification models, as well as accessible software programming, many possible applications surpassing our proposed deployment method can be realized.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3