Multi-omic analysis of guided and unguided forebrain organoids reveal differences in cellular composition and metabolic profiles

Author:

Øhlenschlæger Marie S.ORCID,Jensen PiaORCID,Havelund Jesper F.ORCID,Sutcliffe MagdalenaORCID,Elmkvist Sofie B.ORCID,Criscuolo LucreziaORCID,Wingett Steven W.ORCID,Jakobsen Lene A.,Brewer JonathanORCID,Færgeman Nils J.ORCID,Lancaster Madeline A.ORCID,Larsen Martin R.ORCID,Bogetofte HelleORCID

Abstract

AbstractNeural organoids are invaluable model systems for studying neurodevelopment and neurological diseases. For this purpose, reproducible differentiation protocols are needed that minimize inter-organoid variability whilst generating neural organoids that physiologically resemble the brain area of interest. Currently, two main approaches are used: guided, where the differentiation towards neuroectoderm and subsequently specific CNS regions is driven by applying extrinsic signalling molecules, and unguided, where the intrinsic capability of pluripotent stem cells to generate neuroectoderm without external signalling is promoted. Despite the importance for the field, the resulting differences between these models have not been directly investigated.To obtain an unbiased comparison, we performed a multi-omic analysis of forebrain organoids generated using a guided and unguided approach focusing on proteomic, lipidomic and metabolomic differences. Furthermore, we characterised differences in phosphorylation and sialylation states of proteins, two key post-translational modifications (PTMs) in neurodevelopment, and performed single cell transcriptomics (scRNAseq). The multi-omic analysis revealed considerable differences in neuronal-, synaptic and glial content, indicating that guided forebrain organoids contain a larger proportion of neurons, including GABAergic interneurons, and synapses whereas unguided organoids contain significantly more GFAP+cells and choroid plexus. Furthermore, substantial differences in mitochondrial- and metabolic profiles were identified, pointing to increased levels of oxidative phosphorylation and fatty acid β-oxidation in unguided forebrain organoids and a higher reliance on glycolysis in guided forebrain organoids.Overall, our study comprises a thorough description of the multi-omic differences arising when generating guided and unguided forebrain organoids and provide an important resource for the organoid field studying neurodevelopment and -disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3